منابع مشابه
On Prime Near-Rings with Generalized Derivation
LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element; and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb / {0}; and callN 2-torsion-free if N, has no elements of order 2. A derivation onN is an additive endomorphism D of N such that D xy xD y D x y for all x, y ∈ N. A generalized derivation f with associated deriva...
متن کاملGeneralized Derivations on Prime Near Rings
Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...
متن کاملNotes on Dedekind Rings
These notes record the basic results about DVR’s (discrete valuation rings) and Dedekind rings, with at least sketches of the non-trivial proofs, none of which are hard. This is standard material that any educated mathematician with even a mild interest in number theory should know. It has often slipped through the cracks of Chicago’s first year graduate program, but then we would need at least...
متن کاملGeneralized Derivations of Prime Rings
Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An additive function F : R→ R is called a generalized derivation if there exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0, (2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) ...
متن کاملNotes on Generalized Derivations on Lie Ideals in Prime Rings
Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four variables. Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator xy− yx will be denoted by [x, y]. An add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2008
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2008.07.001